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As manual delineation of lesions in medical image is a very tedious and time consuming process, accurate 

and automatic segmentation of medical images can assist diagnosis and treatment. In this study, we pro- 

pose a deep convolution neural network for stroke magnetic resonance imaging(MRI) segmentation. The 

main structure of our network consists of two symmetrical deep sub-networks, in which dense blocks 

are embedded for extracting effective features from sparse pixels to alleviate the over-fitting problem of 

deep networks. We use the multi-kernel to divide the network into two sub-networks for acquiring more 

receptive fields, and the dropout regularization method to achieve an effective f eature mapping. For the 

post-processing of the soft segmentation, we use image median filtering to alleviate noises and preserve 

the edge details of images. Our network is evaluated on two public benchmark segmentation challenges 

(SISS: sub-acute ischemic stroke lesion segmentation and SPES: acute stroke outcome/penumbra esti- 

mation) with multi-modality MRI sequences. According to the results of the public benchmark reports, 

among 9 teams participating in both SISS and SPES challenges at the same time, our network achieves 

the top performance on SISS challenge, and the top 3 performance on the SPES challenge. In addition, 

our network also exhibits state-of-the-art performance compared with other segmentation methods. Fi- 

nally, we extensively evaluate our network with an ablation experiment. The experimental results show 

that both multi-kernel and dropout strategies can improve the segmentation accuracy of our proposed 

network. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Accurate segmentation of the lesions can provide vital informa-

ion for subsequent quantitative prediction of disease and treat-

ent strategies. In clinical diagnosis, segmentation of lesion tis-

ue is accomplished manually in medical images. The diversity of

edical images, the variability of lesions and the large number of

mage slices demand a huge amount of time for neurologists to

ake decision, and the quality of manual segmentation is directly

elated to their states [1] . More importantly, neurologists usually

ncorporate their own experiences into the image segmentation.

owever, how to translate these experiences to automatic image

egmentation by computer algorithm is non trivial. In addition,

n medical images, there are generally no obvious boundaries be-

ween lesions and the surrounding tissues, which impedes the per-

ormance of segmentation methods. On the other hand, the similar

ignals may represent different diseases or indistinguishable noises
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2,3] , which are challenging for medical image segmentation. In or-

er to alleviate the above issues, some unsupervised methods are

sed in medical image studies. Cardoso et al. proposed a mixture-

odel for imaging synthesis which was used to locate pathologi-

al regions [4] . Forbes et al. presented a Bayesian multi-sequence

arkov model for detecting multiple sclerosis and stroke lesions

5] . Erihov et al. extended an image saliency algorithm to handle

umor detection based on medical images [6] . These methods do

ot require the manual ground truth. However, these methods fo-

us on the detection of lesions rather than the segmentation of

esions. 

Recent years, automatic segmentation of lesions is a major

ocus of medical image studies. Deep learning has made great

chievements in the field of artificial intelligence in the past sev-

ral years [7] . Especially in the imaging applications, deep learning

rovides a powerful tool for medical image segmentation [8–10]

nd medical image classification [11–13] . Deep convolution neural

etwork (DCNN) is one of main tools to deal with image prob-

ems [14] . It has been successful in Computed Tomography (CT)

can �Magnetic Resonance Imaging (MRI) image segmentation and

https://doi.org/10.1016/j.neucom.2019.03.049
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.03.049&domain=pdf
mailto:jxwang@mail.csu.edu.cn
https://doi.org/10.1016/j.neucom.2019.03.049


118 L. Liu, F.-X. Wu and J. Wang / Neurocomputing 350 (2019) 117–127 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

p  

m  

a  

t  

(  

[  

l  

i  

I  

I  

a  

t  

t  

c  

t  

S  

b  

G  

w  

m  

t  

s  

m  

d  

b  

i  

fi  

i  

a  

s

 

D  

D  

m  

d  

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

b  

c  

o  

m  
disease diagnosis [13,15–18] . In this study, we are interested in the

automatic segmentation of lesions from stroke MRI sequences us-

ing an efficient DCNN. 

The rest of this paper is structured as follows. We first intro-

duce some stroke lesions segmentation related work in Section 2 .

Then we introduce the architecture of the proposed network in

Section 3 . We provide a quantitative evaluation of our segmenta-

tion network on SISS and SPES challenges in Section 4 . We provide

ablation experiments to quantify the main contributions of individ-

ual components of our proposed network in Section 5 . Finally, we

discuss and summarize this study in Sections 6 and 7 , respectively.

2. Related work 

Stroke is the second cause of disability and death, and thus cor-

rect and rapid assessment of the presence and location of stroke

lesions is very important for the treatment of the disease. CT

and MRI have always been the main information carriers in non-

invasive stroke research. CT has been used to triage stroke le-

sions, mainly because of its accessibility, speed, availability and

lack of contraindications. In the past decades, many methods for

stroke segmentation of CT have been proposed. Maldjian et al. pre-

sented a method for detecting the lesions of acute ischemia stroke,

which is based on CT images [19] . They compared the voxel den-

sity in the lenticular nucleus and the insular lobes with the con-

tralateral side, and judged whether there was stroke infarct in

the detection regions by the density. Usinskas et al. proposed a

simple unsupervised segmentation method to segment ischemic

stroke lesions on CT images [20] . This method is based on the 18

joint texture features determined by neurologists. They used mean,

standard deviation, histogram and gray level co-occurrence matrix

methods to identify the ischemic stroke lesions. Poh et al. pro-

posed an automated template-based method to segment ventric-

ular cerebrospinal fluid lesions in stroke CT images [21] . They used

the thresholding method to divide the region of interest and ac-

counted for the presence of stroke lesions. Gillebert et al. proposed

a method for automatical segmentation of infarct and hemorrhage

in stroke CT images, which combined the template-based method

with the regional contrast method [22] . Although these methods

reduce the manual rendering time, their sensitivity is too low. In

addition, CT images are not the preferred choice for stroke diag-

nose. CT images are obtained by plain scan, which can not identify

the tissue with the poor density and the low resolution. 

MRI can scan transversely and longitudinally, and has better

resolution in soft tissue. Many studies have been dedicated to the

automatic segmentation of stroke based on MRIs, including region

growing algorithm, Markov random field, thresholding method,

random forest (RF), and so on. The region growing algorithm is

a region-based image segmentation method, which requires initial

seed points and uses an iterative method to determine whether

the pixel neighbors belong to the same region. Saad et al. used

a region growing algorithm to detect the lesion regions [23] . They

used the difference of pixel strength as a measure of segmentation.

Kabir et al. proposed a multimodal Markov random field model for

stroke lesions segmentation on MRI sequences. The model is con-

structed on the Atlas of blood supply territories for assisting diag-

nosis [24] . Mitraa et al. presented an approach to identify ischemic

lesions [25] . First, they used Bayesian Markov random field to clas-

sify the lesion tissues, then they used RF to extract areas with high

likelihood. In the end the thresholding method was used to obtain

the segmentation result. An important drawback of these methods

is that they mainly use the hand-crafted feature. 

More recently, convolutional neural networks (CNNs) have

achieved great success in the field of artificial intelligence, includ-

ing image classification, detection and recognition [26–28] . CNNs

can learn features from raw images and extract context informa-
ion. The feature sets, which are filtered by CNNs, often outperform

re-defined and hand-crafted feature sets. Many extended CNN

ethods were used in medical image segmentation tasks. For ex-

mple, a multi-channel fully convolutional network (FCN) was used

o segment liver tumors [29] . Fully convolutional residual networks

FC-ResNets) was used in electron microscopy image segmentation

30] . One 11-layer CNN with the dual pathway was used for brain

esion segmentation [31] . A U-shape model was used for biomed-

cal image segmentation [15] . Most of the top ranking methods in

SLES 2015 stroke segmentation challenge are based on CNNs [18] .

n addition, DCNNs have gained much popularity and made great

chievements in the medical image segmentation. Compared with

raditional CNNs, these DCNN models have more layers or struc-

ural changes. Liu et al. proposed a new network (Res-FCN), which

ombined the residual block with FCN. This network was used

o automatically segment ischemic stroke lesions from MRIs [32] .

imilarly, Liu et al. proposed a network (Res-CNN), which com-

ined the residual block with U-shape network [33] . In addition,

uerrero et al. proposed a DCNN for detecting WMH and stroke,

hich embedded residual units into U-shape network for obtaining

ore context features [34] . This network not only could segment

he WMH lesions, but also could differentiate WMH and stroke le-

ions. Zhang et al. proposed a DCNN for acute ischemic stroke seg-

entation, which combined the FCN and dense blocks [35] . The

ense blocks not only could relieve the difficulty of training DCNN,

ut also could get more context information without adding train-

ng parameters. Though DCNNs are powerful, there are some de-

ciencies that discouraged the employment of DCNNs on medical

maging data. The deeper a network, the more hyper-parameters

re needed for training it. It is notorious that deep networks cause

erious vanishing-gradient [36] and over-fitting problems [37] . 

In this study, in order to alleviate the above deficiencies of

CNNs. We propose a novel end-to-end multi-kernel DCNN (MK-

CNN) for stroke MRI segmentation. We investigate the perfor-

ance of our network across two different public challenges with

ifferent scanners and acquisition protocols. The main contribu-

ions of our study are as follows: 

1. We propose an end-to-end DCNN which is composed of U-

shape architecture and dense blocks. The U-shape uses the

underlying features to improve the lack of information on

the sampling. Dense blocks are committed to alleviating the

vanishing-gradient problem and improving the network perfor-

mance from depth and breadth. 

2. We divide the network into two sub-networks by two different

convolution kernels in the first layer. This strategy can extract

more image features than the single kernel. We combine the

two sub-networks before output. This design strategy can help

improve the performance of the segmentation. 

3. We embed the dropout regularization method in dense blocks

and transition blocks. It’s an effective method to prevent neu-

ral networks from the over-fitting problem [37,38] . In our ex-

periment, the dropout regularization method can improve the

accuracy of segmentation. 

4. Our network is superior to the most advanced technology on

two sub challenges of the ISLES in 2015. In addition, we con-

duct ablation experiments to analyze the performance of the

network. 

. Method 

The MK-DCNN framework we propose in this study, is mainly

ased on the U-shape architecture. The U-shape is an excellent ar-

hitecture for image segmentation tasks with small samples, which

utperforms the state-of-the-art on a variety of medical image seg-

entation tasks [15,17,39–41] . The U-shape architecture consists of
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Fig. 1. Architecture of the sub-network in MK-DCNN. 

Fig. 2. The pipline of the MK-DCNN. 
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wo paths: a contracting path and a expanding path. The contract-

ng path is used for capturing context and the expanding path is

sed for precise positioning. We embed the dense structure as a

lock into the contracting path of the U-shape. The dense block

ot only reduces training parameters or alleviates the vanishing-

radient problem, but also realizes the reuse of features [42,43] . 

.1. Analysis of network architecture 

MK-DCNN consists of two sub-networks. Fig. 1 illustrates the

rchitecture of our proposed sub-network, which is an end-to-

nd deep neural network. This architecture inherits both of ad-

antages of U-net and DenseNet [15,43] . The external framework

f the sub-network is mainly based on U-shapes, and the inter-

al feature extraction pipeline architecture follows DenseNet-121

43] . In the contracting path of the U-shape, we uses the dense

locks and transition blocks to replace the convolution layers and

ooling layers in the traditional U-net. The dense block is used to

lleviate the vanishing-gradient problem, encourage feature reuse,

nd substantially reduce the number of parameters. The transi-

ion block is used to complete the operation of pooling and reduce

he size of the next input layer. The original DenseNet-121 is used
o object classification [43] . However, we want to implement the

ask of image segmentation. Therefore, we keep the successive up-

ampling layers of the original U-net, which are used in the ex-

anding path to the precise position of pixels. In the middle of

ach sub-network, we connect the peer-to-peer layer to crop fea-

ure map from the contracting path to the expanding path, which

an help get more feature information. 

As shown in Fig. 2 , MK-DCNN consists of two symmetrical

nd parallel sub-networks. The architecture of each sub-network is

imilar to Fig. 1 . The preprocessed images are send into MK-DCNN,

n the first layer, two convolutions with different kernel sizes lead

he images to two sub-networks. In the end, the output feature

aps of two sub-networks, which are combined into one feature

ap by concatenation operation. Then the final segmentation re-

ult is generated. 

The details of the network structure are shown in Table 1 .

K-DCNN has two sub-networks. Each sub-network consists of 3

onvolution layers, 1 pooling layer, 4 dense blocks, 3 transition

locks and 4 up-sampling blocks. After the image is input into a

ub-network, we first use convolution and pooling layers to com-

lete the preliminary features extraction. Then important features

xtraction and down-sampling operation is completed by dense



120 L. Liu, F.-X. Wu and J. Wang / Neurocomputing 350 (2019) 117–127 

Table 1 

Architecture of MK-DCNN. The two sub columns in the second column represent two sub-networks. The “concat” means Concatenate. 

Note that each “conv” consists of the sequence BN-ReLU-Conv. 

Fig. 3. Architecture of a dense micro-unit. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Architecture of the n-layer dense block. 
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blocks and transition blocks. As shown in Fig. 4 , there is a dense

block which is used to alleviate the vanishing-gradient problem

and improve the network performance from depth and breadth.

A dense block is consist of n -layer dense micro-units ( n ≥ 1). As

shown in Fig. 3 , a dense micro-unit consists of a batch normaliza-

tion (BN) [36] layer, a rectified linear unit (ReLU) [44] layer and a

convolution (Conv) layer. The structure of transition block is shown

Fig. 5 . A transition block consists of a BN layer, a ReLU layer and

an average pooling layer [14] . Transition block is used to improve

the speed of network training and realize down-sampling. Before

generating the segmentation results, we use upsampling blocks en-

large the dimension of image. Finally, after two convolution layers,
e get a feature map from sub-network. Then we combined two

eature maps into one by concatenation operation and use the sig-

oid function to complete the segmentation task. 

.2. Feature mapping 

In medical image segmentation tasks, an image is a pixel ma-

rix, and a pixel is a coordinate in the matrix. Each pixel label is

ndependent of its neighborhood in an image. MK-DCNN predicts

very pixel-wise segmentation by coordinates and contextual infor-

ation of pixels. It realizes feature mapping through convolution

ith multiple filters between adjacent layers. Finally, according to
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Fig. 5. Architecture of the transition block. 
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Fig. 6. Pipeline of the concatenate. 
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he activation function, we predict the type of each pixel and gen-

rate the segmentation result. Let X be the number of input layers,

 ∈ [1, X ] denotes an input layer, FM x be the feature mapping of the

 th layer, n be the feature mapping number of the x th layer. The

eature mapping obtained by convolution from previous layer x − 1

an be described as follows: 

 x = f 

( 

F M x −1 ∑ 

n =1 

k n x ∗ y n x −1 + �x 

) 

, (1) 

here y x is the result of convolving the (x − 1) th layer with k n x .

 

n 
x is the kernel of the x th layer, which is also the hidden weight

atrix ( W 

n 
x ) from layer x − 1 to layer x . �x is a learned bias at

ayer x. f () is the non-linearity feature mapping function. If x = 1 ,

 

n 
0 

denotes the original input layer. 

.3. Parallel multi-kernel for feature exploration 

Each pixel feature in the image determines the result of the

egmentation more or less. In neural network, the convolution ker-

el is used to filter the contextual information of pixels from input

mages. If the parameters of the convolution kernel are fixed, the

xtracted feature information would be limited, which may easily

ead to the deviation of the lesion segmentation. The receptive field

f the convolution kernel is also limited, which may only focus on

ocal features. Different kernels generate different receptive fields,

nd they can incorporate more features from the same image and

rovide multiple features for lesion analysis. 

In MK-DCNN, we use dual different convolution kernels in the

rst layer to obtain different contextual information. The details of

he kernels are shown in Table 1 (e.g. 3 × 3 and 7 × 7). An input

mage is sent into two sub-networks with different contextual in-

ormation in the first convolution layer. The output image size is

escribed as: 

 

 

 

 

 

 

 

height _ out = 

⌈
(height _ in − height _ kernel + 2 ∗ pad d ing) 

stride 

⌉
+ 1 ,

wid th _ out = 

⌈
(wid th _ in − width _ kernel + 2 ∗ pad d ing) 

strid e 

⌉
+ 1 , 

(2) 

here height _ out and width _ out denote the size of an output im-

ge, height _ in and width _ in denote the size of an input image.

eight _ kernel and width _ kernel denote the size of convolution ker-

el. padding is used to maintain boundary information and stride

epresents the step length. In the first convolution layer of our net-

ork, the padding is “same” and the stride is 1. 

After filtered by two convolution kernels, different contextual

nformation is sent to two contracting sub-networks for the down-

ampling operation. The two sub-networks are symmetrical and
ndependent. In the process of down-sampling, different context

nformation is extracted by dense blocks and transition blocks.

p-sampling is used to restore image information. After down-

ampling and up-sampling, the input images are transformed into

wo matrices with the same scale. The output matrices come from

wo sub-networks, which are combined into a matrix along an ex-

sting axis by concatenation operation, as shown in Fig. 6 . Com-

ining the context information from different networks can im-

rove the performance of segmentation [15,45] . The multi-kernel

rovides more nest details with different receptive fields than one

ernel. MK-DCNN can provide more alternative contextual features

or segmentation. 

.4. Dropout regularization method for effective learning 

Multi-scale or multi-modality images can provide richer contex-

ual feature information for segmentation model, which are benefit

o boost the performance of models [31,46–49] . However, simply

sing multi-scale or multi-modality is a burden to DCNNs, which

ot only demands much training time, but also increases noise and

egrades performance. How to find a balance between richer con-

ext features and important feature screening still needs to be ex-

lored. 

The regularization methods are used to prevent the over-fitting

roblem, reduce the number of feature vectors and reduce the

omplexity of the model. These methods can automatically weaken

he unimportant feature variables and extract important feature

ariables from many feature variables. Dropout is one of regular-

zation methods, which is used to screen important features in

idden layers of the network and alleviate the over-fitting prob-

em [37,38,50,51] . Compared with regularization methods L1 and

2, dropout does not aim at optimizing the cost function while it

hanges the structure of the neural network [37,52] . The essence

f dropout is to restrict the parameters to be optimized [50] . In

he DCNNs training process, dropout temporarily discards the hid-

en neurons according to a certain probability, which can preserve

ore robust and valuable hidden neurons in neural networks. 

In MK-DCNN, we use the multi-kernel method to generates

ore contextual feature information. However, different contex-

ual feature information may relate to the same location of the

mage. It means that multiple neurons in the network may de-

ect the same feature, which wastes resources. In order to allevi-

te this problem, in MK-DCNN, we use the dropout regularization

ethod to filter feature information. The application of dropout on

 generic i th neuron is shown below: 

 i = x i a 

( 

d i ∑ 

k =1 

w k x k + b k 

) 

(0 ≤ i ≤ h ) , (3)

here Q i is the retained probability of neuron x i (a Bernoulli ran-

om variable), a () is an activation function, k ∈ [1, i ] is the unit

umber, w k and b k are the k th unit weight and bias, respectively.

 denotes dimensions, x d i indicates that x i is a Bernoulli variables

ith d dimensions. 
∑ d i 

k −1 
w k x k is the sum of the product of all neu-

on weights w and x before the i th neuron. 
k k 
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In MK-DCNN, we need to dropout a set of neurons from a layer.

Let the j th layer have n neurons. In a cycle, the neural network can

be regarded as the integration n times of Bernoulli’s experiments.

Thus, the number of neurons retained in layer j can be computed

as follows: 

 = 

d j ∑ 

i =1 

x i , (4)

where Y is the retained number of neurons, x i is a retained neuron.

In the n experiments, the probability of retaining k neurons was:

f (k ; n, p) = 

(
n 

k 

)
p k q (n −k ) , (5)

where p = 1 − q, p represents the probability of a neuron being

kept on and q represents the probability of a neuron being turned

off. p k q (n −k ) is the probability of obtaining a single sequence of k

successes on n trials and (n − k ) failures, while 
(

n 
k 

)
is the binomial

coefficient used to calculate the number of possible successful se-

quences. 

In MK-DCNN, we use a fixed dropout ratio to handle the fea-

ture filtering in each training iteration. When a limited amount of

neurons disappear at a fixed ratio in the hidden layers, a certain

number of redundant features can be filtered out. In the end, the

feature learning process can be enhanced in hidden layers of the

network. 

3.5. Loss function 

Image is composed of pixels. Gray image segmentation task can

be regarded as pixel’s binary classification. Dice coefficient (DC) is

one of the classic metrics for evaluating the segmentation perfor-

mance. It can be used as loss function to measure the gap between

the result of the segmentation and the ground truth [53] . Consid-

ering two sets of X and Y , the DC is defined as follows: 

DC(X, Y ) = 

2 | X 

⋂ 

Y | 
| X | + | Y | , (6)

where X and Y denote the set of ground truth and segmentation,

respectively. DC ( X, Y ) ∈ [0, 1], 0 indicates two sets have no over-

lap, and 1 indicates two sets are the exact same. In binary image

segmentation, we use the softmax function output to replace the

predicted binary labels. In this study, we combine DC with cross

entropy function, and a pseudo DC loss function is defined as: 

L = 1 − 1 

C 

C ∑ 

c=1 

(
2 

∑ N 
n =1 (p(x n ) c q (x n ) c ) ∑ N 

n =1 q (x n ) c + 

∑ N 
n =1 p(x n ) c 

)
, (7)

where C is the number of classes, c ∈ C is the pixel class, N is the

pixel number, x n is the n -th pixel. p ( x n ) 
c represents the true prob-

ability of pixel x n belonging to class c , and q ( x n ) 
c represents the

prediction probability of pixel x n belonging to class c . In order to

measure the loss contribution of each class, the aggregating DC is

defined as the average of DCs from different classes. In the tradi-

tional single type lesion segmentation task, C is usually set to 1. 

Adam optimization algorithm [54] is outstanding in computer

vision and natural language processing. It needs less resources and

makes the model converge quickly. It also can accelerate the train-

ing speed fundamentally. In our experiment, we use Adam opti-

mization algorithm to train MK-DCNN. In the prediction stage, the

forecasting process of lesion is automatic in MK-DCNN without any

manual intervention. 

3.6. Evaluation measures 

In our study, we adopt three metrics to evaluate the quality

between the segmentation result and the reference ground-truth:
he Dice’s coefficient (DC), the Average Symmetric Surface Dis-

ance (ASSD) and the Hausdorff distance (HD). DC has been de-

ned in Eq. 6 , which measures the similarity between two images.

SSD denotes the average distance between the volumes surface

oints averaged over both directions. Considering two sets of sur-

ace points X and Y, the ASSD is defined as: 

SSD (X, Y ) = 

∑ 

x ∈ X min y ∈ Y d(x,y ) 

| X | + 

∑ 

y ∈ Y min x ∈ X d(y,x ) 

| Y | 
2 

, (8)

here 
∑ 

x ∈ X min y ∈ Y d(x,y ) 

| X | and 

∑ 

y ∈ Y min x ∈ X d(y,x ) 

| Y | are the average surface

istance base on d ( x, y ) and d ( y, x ), respectively. d ( x, y ) being the

uclidean distance between the points x and y , and d ( y, x ) being

he Euclidean distance between the points y and x . ASSD is given

n mm , the lower the better. 

HD denotes the maximum distance between two volumes sur-

ace points. HD can denote outliers. It is defined as: 

D (X, Y ) = max 

{ 

max 
x ∈ X 

min 

y ∈ Y 
d(x, y ) , max 

y ∈ Y 
min 

x ∈ X 
d(y, x ) 

} 

. (9)

imilar to the ASSD, the HD is given in mm and a lower value de-

otes a better segmentation. 

. Experiments & results 

MK-DCNN is applied in ISLES 2015 challenge. ISLES challenge

as two different sub-tasks with MRIs: SISS and SPES. Two tasks

re about ischemic stroke disease with different lesions and multi-

odality MRIs. All participants verify and adjust the algorithms

ased on the benchmark training dataset. Finally, the testing

ataset without the ground truth was distributed on the challenge

eb pages. Participants should submit their final segmentation re-

ults to the organizers, who scored the segmentation results. 

.1. SISS 

Sub-acute ischemic stroke is a common cerebrovascular disease,

hich is a sub type of stroke disease. From the onset, this dis-

ase usually appears in the stage of 24H-2W [55] . There are 64

ub-acute ischemic stroke samples in the SISS dataset, 28 sam-

les for training and 36 samples for testing, 56 out of which come

rom a medical center and 8 additional samples come from another

euroradiology center. All samples were anonymous patients who

ere diagnosed as ischemic stroke, and each sample has T1-w, T2-

, DWI and Flair MRI sequences. The purpose of the SISS challenge

s to segment the lesions of sub-acute infarct. All sequences are al-

eady skull-stripped and co-registered by the organizers. The sam-

les in both training and testing datasets are preserved the diver-

ity of the stroke cases: both contain single- and multi-focal, small

nd large lesions. In our experiment, we use multi-modality MRIs

DWI and Flair) as inputs. 

.2. SPES 

Penumbra is surrounding tissue of infarct core in acute ischemic

troke [56] . The infarct core is irrevocable while penumbra could

e revocable. Quick and accurate segmentation of the penumbra

s of great significance to the treatment of stroke. The lesion is

sually defined by diffusion and perfusion MRIs [57] . SPES dataset

ontains 50 samples: 30 for training and 20 for testing. Each sam-

le has multi-modality MRI sequences: T1c, T2, DWI, CBF, CBV,

TP and Tmax. All anonymous samples come from a hospital, and

ll sequences have been skull-stripped and rigidly registered. In

PES challenge, an automated method to segment and quantify the

enumbra estimation is important for treatment. In our experi-

ent, we use multi-modality MRIs (DWI,TTP,CBF,Tmax,T2 and CBV)

s inputs. 
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Table 2 

The ranking of the testing datasets on the SISS and SPES segmentation challenges. Values correspond to the mean (standard 

deviation). 

SISS Challenge SPES Challenge 

Rank Teams DC[0,1] ASSD(mm) HD(mm) Teams DC[0,1] ASSD(mm) HD(mm) 

1 lianl1 0.57(0.29) 8.22(16.25) 43.02(30.48) maieo1 0.81(0.09) 1.36(0.74) 23.62(12.99) 

2 clera1 0.56(0.29) 9.26(17.13) 33.64(27.85) clera1 0.80(0.11) 1.43(1.04) 25.70(17.08) 

3 fengc1 0.55(0.30) 8.13(15.15) 25.02(22.02) lianl1 0.79(0.09) 1.79(0.54) 36.93(25.42) 

4 martc2 0.50(0.32) 14.69(17.82) 80.06(22.00) robbd1 0.78(0.09) 2.77(2.77) 40.27(25.10) 

5 abdua1 0.43(0.31) 16.85(15.71) 74.66(25.10) martc2 0.77(0.14) 1.78(0.84) 25.88(12.98) 

6 robbd1 0.43(0.30) 14.22(14.41) 62.58(30.61) dutif1 0.76(0.10) 2.24(0.79) 24.16(12.62) 

7 maieo1 0.42(0.33) 17.59(21.06) 56.39(30.65) fengc1 0.76(0.09) 2.29(1.76) 30.65(16.49) 

8 haect1 0.37(0.33) 17.36(19.27) 63.59(31.68) abdua1 0.72(0.24) 4.68(11.60) 32.76(20.66) 

9 dutif1 0.35(0.31) 18.74(20.64) 55.99(35.09) haect1 0.65(0.19) 3.87(3.05) 34.65(16.23) 

4

 

s  

i  

i  

a  

p  

i  

t  

i  

i  

a  

T  

t  

p  

s

4

 

p  

t  

a  

O  

s  

v

 

D  

a  

a  

l  

e  

t

4

 

N  

N  

T  

t  

U  

t  

o  

E  

m  

1  

Table 3 

The ranking of the testing datasets on the SISS segmentation 

challenge. Values correspond to the mean (standard deviation). 

Methods DC[0,1] ASSD(mm) HD(mm) 

U-net [15] 0.14(0.16) 41.04(19.76) 83.0 0(21.0 0) 

FCN [45] 0.17(0.24) 25.36(15.64) 82.09(19.03) 

EDD Net [59] 0.49(0.33) 12.66(15.98) 59.12(26.85) 

Res-FCN [32] 0.49(0.32) 12.41(16.41) 53.14(30.00) 

MK-DCNN 0.57(0.29) 8.22(16.25) 43.02(30.48) 

Table 4 

The ranking of the testing datasets on the SPES segmenta- 

tion challenge. Values correspond to the mean(standard devi- 

ation). 

Methods DC[0,1] ASSD(mm) HD(mm) 

U-net [15] 0.75(0.12) 3.34(2.18) 64.11(29.14) 

FCN [45] 0.70(0.12) 3.54(2.04) 60.42(28.56) 

EDD Net [59] 0.68(0.16) 3.49(2.77) 51.86(24.93) 

Res-FCN [32] 0.71(0.12) 3.43(1.94) 61.05(23.75) 

MK-DCNN 0.79(0.09) 1.79(0.54) 36.93(25.42) 
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.3. Model training 

In SISS and SPES challenges, we resize all MRI sequences to the

cale of 160 × 160. In the image preprocessing stage, all 3D train-

ng images and testing images of two challenges are split into 2D

mages. The images of training datasets are augmented by flipped

nd randomly rotated methods. In the training process, the hyper-

arameters are kept constant: the batch size is set to 8, the epoch

s set to 60 and the learning rate is set to 0.001. In addition to

hese commonly used parameters, we added dropout parameters

n convolutions. which is set to 0.1. In the testing process, network

nherits the weight of the training model. After testing, all images

re restored to the original size by the affine transform method.

hen a post-processing step to refine the network output, we use

he image median filtering algorithm [58] to alleviate noises and

reserve the edge details of images. Finally, we synthesize the 2D

lice images into 3D. 

.4. Result and analysis 

We evaluate MK-DCNN on SISS and SPES challenges, and com-

are the results of 9 teams that participated in both challenges at

he same time (at the moment of writing the paper). The results

nd rankings of the participants are on the challenge web page 1 .

ur team name is lianl1. The results with the ranking of the on-

ite SISS and SPES are shown in Table 2 . MK-DCNN has achieved

ery competitive rankings in both two segmentation tasks. 

Among 9 submissions both on SISS and SPES challenges, MK-

CNN achieves superior performance on both challenges. Our team

chieves top one ranking performance in SISS challenge, and we

lso achieves top 3 performance in SPES challenge. In SPES chal-

enge, only team maieo1 and team clera1 are ahead of us. How-

ver, in SISS challenge, we surpassed team clera1 and far ahead of

eam maieo1. 

.5. Comparison with other segmentation methods 

In addition, in SISS and SPES challenges, we also compare

K-DCNN with the state-of-the-art methods:U-net, FCN [45] , EDD

et [59] and Res-FCN [32] . The comparison results are shown in

ables 3 and 4 , respectively. Among the four comparison methods,

he ranking of segmentation results is very unstable. For example,

-net and FCN methods performed well in the SPES challenge, but

hey did poorly in the SISS challenge. It is observed that MK-DCNN

utperforms other four methods with DC, ASSD and HD metrics.

specially in the SPES challenge, compared with the second U-net

ethod, MK-DCNN achieves an improvement of 0.4 in DC score,

.55 in ASSD score and 27.18 in HD score. MK-DCNN is composed
1 http://isles-challenge.org . 

A  

s  

A  
f U-net and dense blocks. Compared with U-net, dense blocks can

elp MK-DCNN extract more features. FCN combines semantic in-

ormation from deep layers and shallow layers, which can produce

ccurate and detailed segmentation. MK-DCNN not only inherits

he advantages of FCN, but also uses the multi-kernel strategy to

btain more receptive fields and contextual information, which can

rovide more information for correct segmentation. EDD Net is

 deep fully convolutional network with mixed size image slices,

hich can help optimal lesion segmentation. Compared with EDD

et, MK-DCNN uses the dropout regularization method to alleviate

he over-fitting problem and filter the number of feature vectors,

hich contributes to the performance gains. Compared with the

esidual block in Res-FCN, we use dense blocks to obtain more fea-

ure information from shallow layers. As shown in Tables 3 and 4 ,

he results of all the methods in the SISS and SPES challenges are

uite different. The results of U-net, FCN, EDD Net and Res-FCN

n the SISS challenge are disappointing. These segmentation meth-

ds often do well in one specific medical images, do not generalize

ell to other types of medical images. 

. Ablationstudy 

.1. Data and pre-processing 

In this section, to verify the superiority of MK-DCNN, we ap-

ly MK-DCNN to an acute stroke dataset with 29 stroke pa-

ients which come from an in-house MRI segmentation dataset.

ll scan sequences were collected by Phillips Achieve 3.0T MRI

ystem. Each sample has multi-modality: T1, T2, DWI, Flair and

DC. The acquisition protocols of MRI sequences are shown as fol-

http://isles-challenge.org
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Fig. 7. Training losses of 4 networks. 

Fig. 8. Testing losses of 4 networks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Ablation study about performance of 4 networks with 

DC, ASSD and HD metrics. 

Methods DC[0,1] ASSD(mm) HD(mm) 

U-net 0.53 4.32 3.01 

MK-DCNN1 0.69 3.20 2.38 

MK-DCNN2 0.62 4.17 2.57 

MK-DCNN 0.74 2.01 2.38 
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lows: matirx size (230 × 230 × 18), slices (18), slices spacing (1.0–

1.5 mm), slices thickness (6 mm), echo time (87 ms), repetition

time (23 ms). In image pre-processing, we use SPM12 software 2 

to transform DICM images into NIfTI images. All sequences are co-

registered to DWI sequence, and all processed MRI sizes are nor-

malized to 160 × 160 pixels. 

5.2. Ablation analysis 

To evaluate the impact of dense block, multi-kernel and

dropout regularization method in MK-DCNN, we compare the per-

formance of U-net [15] , MK-DCNN1 (with 1 pathway), MK-DCNN2

(two sub-networks and without dropout) and MK-DCNN (ours). In

the infarct diagnosis of acute ischemic stroke, DWI is the most sen-

sitive and common modality. We use DWI as input modality in ab-

lation experiments. 22 samples are used as the training cases and

7 samples are used as the testing cases. Ablation experiments are

carried out under the same parameter settings and the same data

processing strategies for fair comparison. 

As shown in Figs. 7 and 8 , we analyze the training and test-

ing leaning behaviors of 4 networks. It is clearly observed that the

curves of MK-DCNN are lower than that of U-net. It means that

MK-DCNN achieves a lower loss rate in both training and testing

processes than that of U-net. We embed the dense blocks into U-

net which can improve the performance of the network. As shown

in Fig. 7 , at the beginning of the training, MK-DCNN1 converges to

a smaller loss rate than MK-DCNN does. From epoch 10 to 60, the

loss rates of the two models almost coincide. However, in Fig. 8 ,
2 http://www.fil.ion.ucl.ac.uk/spm/ . 

a  

p  

a  
he curve of the MK-DCNN shows the smaller loss rate than that

f MK-DCNN1, which indicates that the multi-kernel has a greater

ontribution to the network than the single kernel. From Fig. 7 ,

ne can observe that the loss rate curves of MK-DCNN2 and MK-

CNN with very high coincidence on training dataset. However, in

ig. 8 , it is obvious that the performance of MK-DCNN is better

han MK-DCNN2, which validates the effectiveness of the dropout

egularization method in MK-DCNN. 

In addition to analyze the loss rate of the 4 methods, we

se DC, ASSD and HD as metrics to compare the performance

n the testing dataset. Table 5 presents the segmentation results

f 4 methods at the same configurations. It illustrates that MK-

CNN achieves better performance. Dense block, multi-kernel and

ropout regularization method in MK-DCNN can effectively im-

rove segmentation performance. 

. Discussion 

In this study, we have proposed an automatic stroke MRI seg-

ent network MK-DCNN. MK-DCNN inherits the original advan-

ages of the U-net and DenseNet121. The architecture of U-shape

an improve the precise location and semantics capture of fea-

ures. The dense block can reuse previous features, alleviate the

anishing-gradient problem and reduce the number of training pa-

ameters. In addition, two different kernels in the first layer are

sed to divide the network into two sub-networks to obtain dif-

erent receptive fields, which helps MK-DCNN obtain much richer

ontextual information. Furthermore, we use the dropout regular-

zation method to extract important information and reduce the

umber of neurons. We use four dropout rates (0.5, 0.2, 0.1 and

) to validate the contribution of dropout regularization method in

he proposed MK-DCNN. The experiments are tested on two pub-

ic benchmark challenges: SISS and SPES. The results are shown

n Table 6 . It can be observed that the performance of MK-DCNN

s the worst when the dropout rate is set to 0. Compared with

ropout rates: 0.5, 0.2 and 0.1, the performance of MK-DCNN

chieves the best in two challenges when dropout ratio is set to

.1. Larger dropuout rate means more contextual information loss,

hich degrades the performance. Finally, we choose 0.1 as the

alue of dropout rate in proposed MK-DCNN. 

In SISS and SPES challenges, although both sub-acute ischemic

troke and penumbra belong to stroke disease. However, they are

ssentially different in the prognosis. The infarct of stroke can not

e saved, it obstructs blood supply and leads to tissue death. The

issue of penumbra surrounds the infarct, which is not completely

bstructed. Penumbra could potentially be saved. It’s important

o prevent penumbra from transforming into infarct. In the clini-

al treatment decision, an automatic lesions segmentation method

ould provide reliable auxiliary evaluation for neurologists. 

As shown in Tables 2 –4 , it is obvious that the DC, ASSD and HD

cores are quite different in SISS and SPES challenges. Several top

ank methods have achieved superior performance in SPES chal-

enge. However, the results of the same methods in SISS challenge

re quite different. The reason for this phenomenon is very com-

licated. Apart from the differences of disease and MRI sequences,

ccording to our analysis, there are two main reasons leading to

http://www.fil.ion.ucl.ac.uk/spm/
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Table 6 

The results of different dropout rates used in MK-DCNN on the SISS and SPES segmentation challenges. 

Values correspond to the mean (standard deviation). 

SISS Challenge SPES Challenge 

Dropout rate DC[0,1] ASSD(mm) HD(mm) DC[0,1] ASSD(mm) HD(mm) 

0.5 0.52(0.32) 12.26(17.12) 50.34(30.30) 0.76(0.09) 2.10(0.57) 32.54(21.14) 

0.2 0.56(0.30) 8.86(16.54) 38.41(29.42) 0.77(0.11) 2.20(0.78) 43.92(27.75) 

0.1 0.57(0.29) 8.22(16.25) 43.02(30.48) 0.79(0.09) 1.79(0.54) 36.93(25.42) 

0 0.51(0.34) 12.15(16.78) 51.37(30.30) 0.76(0.11) 2.78(1.34) 66.59(24.77) 

Fig. 9. Lesion examples in SISS. The first row shows three Flair slices with WMHs 

or demyelination lesions, red circles denote WMHs or demyelination and green cir- 

cles denote stroke lesions respectively. The second row shows three DWI slices with 

artifacts, red and green circles denote artifacts and stroke lesions, respectively. The 

third row shows three Flair slices with hemorrhagic stroke and ischemic stroke, red 

and green circles denote hemorrhagic stroke and ischemic stroke lesions, respec- 

tively. 
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Table 7 

Multi-modality on SISS with three metrics. The bottom line is our 

final results. 

Modalities DC[0,1] ASSD(mm) HD(mm) 

DWI + Flair+T1+T2 0.49(0.32) 12.41(16.41) 53.14(30.00) 

DWI + Flair 0.57(0.29) 8.22(16.25) 43.02(30.48) 

Table 8 

Multi-modality on SPES with three metrics. The bottom line is our final results. 

Modalities DC[0,1] ASSD(mm) HD(mm) 

DWI + CBF+CBV+T1c+T2+Tmax+TTP 0.76(0.10) 2.10(0.57) 32.54(21.14) 

DWI + CBF+CBV+ T2+Tmax+TTP 0.79(0.09) 1.79(0.54) 36.93(25.42) 
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t  

t  
he low scores in SISS challenge. First, in SPES challenge, all of MRI

equences come from one medical center. MRI acquisition param-

ters are unified, and there is a slight difference in density and

exture of the obtained MRIs. However, in SISS challenge, there are

4 samples, 28 training samples and 28 testing samples come from

he same center, and 8 additional samples come from another cen-

er in the testing dataset. The 8 additional samples had different

cquisition parameters and density, and there is no training data

rom the second center. Second, there are artifacts and signal con-

istencies of other lesions in MRI sequences of SISS, which makes

ig trouble for most methods. For example, infarcts of sub-acute

troke are strong signal in DWI and Flair modalities, and there

re periventricular WMHs and demyelination lesions have isoin-

ense signal in the same MRI modalities, as shown in the first row

n Fig. 9 . The hyperintense artifacts also cause confusion in DWI

odality, as shown in the second row in Fig. 9 . The lesions of

emorrhagic stroke in the test samples also brought troubles to
schemic stroke segmentation. The pathologies of the two diseases

re different, and the signals of two diseases are reversed in DWI

odality, as shown in the third row in Fig. 9 . However, there is

o distinction between the two diseases in SISS challenge. All of

hese reflect the high variability of stroke characteristics provided

y SISS challenge, which is a complex task for all participants. How

o break the limitation of multi-data centers and lesion complexity

roblem is one direction of our future work. 

In order to achieve better segmentation results, we use multi-

odality in the SISS and SPES challenges. Multi-modality MRI se-

uences are commonly used in the medical image segmentation

asks, which can improve the accuracy of lesion segmentation

46,48,60] . In our experiments, we integrate the clinical experi-

nce of neurologists into the process of MRI modalities selection.

n the diagnosis of sub-acute stroke, DWI and Flair are sensitive

equences, and the infarct areas show high signals on DWI, Flair

nd T2 sequences. However, the T2 sequences are fuzzy in SISS

ataset and the signal of lesion is not obvious in T1. Finally, we

hoose DWI and Flair as input images in MK-DCNN in SISS chal-

enge. In the clinical, the penumbra region is usually determined

y PWI and DWI mismatch methods, although it is still controver-

ial in medicine [61] . There is no PWI in SPES MRI sequences. In

PES challenge, combining medical prior knowledge, we use DWI,

TP, CBF, Tmax, T2 and CBV as input images in MK-DCNN. We used

he different multi-modality sequences to conduct two compara-

ive experiments on testing SISS and SPES datasets, respectively.

he results are shown in Tables 7 and 8 , which indicate that the

ffect of using all modalities as input data is not better than our

elected multi-modality. The improper use of multi-modality may

esult in the increase of noise and decrease of the performance

f the model. Better understanding of the pathological knowledge

nd incorporation with deep learning methods is a feasible strat-

gy, it may better capture the heterogeneity feature and help pro-

ote segmentation performance. 

. Conclusion 

In this study, we presented an end-to-end lesion segmenta-

ion network, and evaluated the performance of the network on

wo public benchmark challenges. In MK-DCNN, we elegantly com-
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bined the U-shape with dense blocks, used multi-kernel and drop

regularization method to achieve state-of-the-art performance on

two challenges. Then we carried out the ablation experiments on

an in-house dataset. The results demonstrate that the deep layer,

multi-kernel strategy and dropout method in MK-DCNN can im-

prove the performance of segmentation. The automatically gener-

ated segmentation of ischemic stroke lesion is important for clin-

ical diagnosis. Our methods still need to be improved. There is

a limitation in the segmentation of multi-data center and similar

pathological tissues. This will be one direction of our future work.

We would also try to analyze other stroke diseases by combining

brain networks and hyper-graph techniques [62–66] . 
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