
Genome analysis

EPGA2: memory-efficient de novo assembler

Junwei Luo1,2, Jianxin Wang1,*, Weilong Li1, Zhen Zhang1,

Fang-Xiang Wu3, Min Li1 and Yi Pan4

1School of Information Science and Engineering, Central South University, ChangSha, 410083, China, 2College of

Computer Science and Technology, Henan Polytechnic University, JiaoZuo, 454000, China, 3Division of Biomedical

Engineering, University of Saskatchewan, Saskatchewan, S7N 5A9, Canada and 4Department of Computer

Science, Georgia State University, Atlanta, GA 30302, USA

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received and revised on June 19, 2015; accepted on August 13, 2015

Abstract

Motivation: In genome assembly, as coverage of sequencing and genome size growing, most cur-

rent softwares require a large memory for handling a great deal of sequence data. However, most

researchers usually cannot meet the requirements of computing resources which prevent most

current softwares from practical applications.

Results: In this article, we present an update algorithm called EPGA2, which applies some new

modules and can bring about improved assembly results in small memory. For reducing peak

memory in genome assembly, EPGA2 adopts memory-efficient DSK to count K-mers and revised

BCALM to construct De Bruijn Graph. Moreover, EPGA2 parallels the step of Contigs Merging and

adds Errors Correction in its pipeline. Our experiments demonstrate that all these changes in

EPGA2 are more useful for genome assembly.

Availability and implementation: EPGA2 is publicly available for download at https://github.com/

bioinfomaticsCSU/EPGA2.

Contact: jxwang@csu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome assembly is one of the most important tasks in numerous

applied fields (He et al., 2013). When using one software to recon-

struct complete genome sequence from sequence data, researchers

not only emphasize assembly results but also memory efficiency.

Although many softwares have been developed for genome assem-

bly, their balance between accuracy and memory efficiency are not

satisfactory due to complex data structures.

We previously published EPGA (Luo et al., 2015), one de novo

assembler which can resolve some problems caused by complex re-

petitive sequence regions. Although EPGA can get satisfactory as-

sembly results, it does not have advantage about peak memory

comparing with other popular assemblers. The bottleneck of

EPGA’s memory efficiency primarily exists in two steps: K-mers

Counting and De Bruijn Graph Constructing, because EPGA re-

quires that all reads and K-mers reside in memory. Such storage

strategy ends up with the memory consumption growing dramatic-

ally as the number of reads is increasing.

DSK (Rizk et al., 2013) is one K-mer counting tool which parti-

tions reads, and each partition is separately loaded in memory.

BCALM (Chikhi et al., 2014) is one algorithm for building simple

paths in De Bruijn Graph which clusters K-mers and iteratively loads

each cluster in memory. For resolving memory problem in EPGA,

we present EPGA2, which replaces some components in EPGA with

DSK and BCALM. In addition, EPGA2 adds Errors Correction in its

pipeline and parallels the step of Contigs Merging. The experimental

results demonstrate that EPGA2 can produce more satisfactory con-

tigs and scaffolds using small memory.

2 Methods

The EPGA2 pipeline consists of seven steps: (i) Errors Correction:

there will usually be some errors in sequencing data, EPGA2 adopts

VC The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 3988

Bioinformatics, 31(24), 2015, 3988–3990

doi: 10.1093/bioinformatics/btv487

Advance Access Publication Date: 26 August 2015

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/31/24/3988/197171 by C
entral South U

niversity user on 24 July 2020

https://github.com/bioinfomaticsCSU/EPGA2
https://github.com/bioinfomaticsCSU/EPGA2
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv487/-/DC1
http://www.oxfordjournals.org/


BLESS (Heo et al., 2014) to correct errors in reads. (ii) K-mers

Counting: DSK is applied to count K-mers. (iii) De Bruijn Graph

Constructing: the De Bruijn Graph is constructed based on the

K-mers produced previously. (iv) Contigs Assembly: EPGA2 selects

long nodes (whose lengths longer than insert size) in De Bruijn

Graph as start nodes and iteratively determines their successor nodes

and precursor nodes according to one scoring function. (v) Contigs

Merging: one contig will be removed if it is included in another

contig. Two contigs can be merged together if they have overlap and

get sufficient support from paired-end reads information.

(vi) Scaffolding: the orientation and order of contigs are determined

using paired-end reads. (vii) Gap Filling: the gap regions will be

filled by mate reads of reads in the ends of contigs.

The EPGA2 includes several improvements relative to EPGA.

First, errors in reads usually cause erroneous edges and lead to lost

correct edges in De Bruijn Graph, which increases the difficulty of

Contig Assembly. EPGA directly employs raw read libraries to count

K-mers and construct De Bruijn Graph which increases the difficulty

of the following steps. To improve the correctness of De Bruijn

Graph and facilitate the following steps, EPGA2 adds correction

step using BLESS.

Second, when counting K-mers, EPGA uses a hash table, where

keys are the K-mers and the values are the counts. This simple strategy

needs large memory. EPGA2 employs DSK to count K-mers and

(Kþ1)-mers, which only requires a fixed user-defined amount of mem-

ory. EPGA2 only keeps solid K-mer whose frequency is larger than one

and solid (Kþ1)-mer whose frequency is larger than zero. EPGA loads

all reads in memory to construct De Bruijn Graph which requires too

much memory. When using BCALM to generate simple paths, EPGA2

introduces one additional condition that each edge in De Bruijn Graph

should be one solid (Kþ1)-mer. After simple paths created by this

revised BCALM, EPGA2 transforms these simple paths to optimized

De Bruijn Graph (each simple path is merged to one node and each tip

is removed). In this step, the memory will be reduced more effectively.

Thirdly, EPGA2 parallels the procedure of Contigs Merging.

3 Experiment

We evaluate the performance of EPGA2 on four real datasets which

include two bacteria (Staphylococcus aureus and Escherichia coli)

and two fungi (Schizosaccharomyces pombe and Neurospora crassa)

provided by AllPath2 (MacCallum et al., 2009). Details about these

real datasets are shown in Supplementary Table S1. We compare

EPGA2 with other popular assemblers: Abyss (Simpson et al.,

2009), Velvet (Zerbino and Birney, 2008), SOAPDenvo2 (Luo et al.,

2012), PE-Assembly (Ariyaratne and Sung, 2011) and AllPath2. To

provide unbiased benchmarks, we use evaluation tool GAGE

(Salzberg et al., 2012) which provides corrected analysis. GAGE

splits contigs and scaffolds at every error position and provides cor-

rected results. CN50 is N50 of corrected contigs or scaffolds.

Assembly results are listed in Table 1, and the explicit results are

listed in Supplementary Tables S2–S5. We can get that EPGA2 offers

substantial improvements over the original EPGA. CN50 usually

can represent the accuracy of assembly results, EPGA2 gets longer

S.CN50 in all real datasets. For coverage, EPGA2 mostly acquires

higher coverage than EPGA for contigs and scaffolds. The improve-

ments are caused by adding Errors Correction step which enhances

the function of assembly strategies in EPGA.

For the four genomes, EPGA2 only requires 0.9G, 1.7 G, 6.1G and

15 G memory for assembly which are smaller than EPGA and other

popular assemblers. This improvement is due to partition strategies of

DSK and BCALM which partition reads and K-mers, and each partition

is separately loaded in memory. EPGA2 parallels the step of Contigs

Merging which can save time, especially for large datasets. Because the

first three datasets are relatively small and the decrease of running time

in Contigs Merging is smaller than the increase of running time about

BLESS, EPGA2 runs longer time than EPGA in the three datasets.

Paralleling Contigs Merging can save more time for large datasets, and

therefore EPGA2 runs shorter time than EPGA for the last dataset.

4 Conclusion

In this article, to resolve the memory efficiency problem in EPGA,

we present EPGA2, which updates some modules in EPGA. In add-

ition, for reducing running time, EPGA2 parallels Contigs Merging.

For improving accuracy of assembly results, EPGA2 adds Errors

Correction using BLESS. The experimental results demonstrate the

balance between assembly results and memory efficiency of EPGA2

is satisfactory. EPGA2 should be particularly appropriate for re-

searchers with limited computing resources.

Funding

This work was supported in part by the National Natural Science Foundation

of China under Grant No. 61232001, No. 61420106009, No. 61379108 and

the Program for New Century Excellent Talents in University under Grant

NCET-12-0547.

Conflict of interest: none declared.

References

Ariyaratne,P. and Sung,W.K. (2011) PE-assembler: de novo assembly using

short paired end reads. Bioinformatics, 27, 167–174.

Chikhi,R. et al. (2014) On the representation of de Bruijn graphs. In:

Sharan,R. (ed), RECOMB, Lecture Notes in Computer Science, Springer

International Publishing, Pittsburgh, vol. 8394, pp. 35–55.

He,Y. et al. (2013) De novo assembly methods for next generation sequencing

data. Tsinghua Sci. Technol., 5, 500–514.

Table 1. Assembly results

EPGA EPGA2 Assemblers

Genome C.Num C.CN50 C.Cov S.Num S.CN50 S.Cov Time PM C.Num C.CN50 C.Cov S.Num S.CN50 S.Cov Time PM PM

(kb) (%) (kb) (%) (m) (G) (kb) (%) (kb) (%) (m) (G) (G)

S.aureus 22 220 99.68 5 597 99.69 15 9 28 189 99.66 7 753 99.68 35 0.9 2.6 (Abyss)

E.coli 38 198 99.98 19 823 99.98 40 28 33 184 99.98 9 1379 99.99 89 1.7 5.3 (Abyss)

S.pombe 334 70 98.44 103 495 98.47 261 97 355 70 98.73 116 743 98.75 342 6.1 6.6 (Abyss)

N.crassa 6206 10 90.08 4651 21 90.14 2830 198 5711 11 91.11 3632 39 91.11 1721 15 25.6 (Abyss)

C.Num, the number of contigs; C.CN50, the CN50 of contigs; C.Cov, the coverage of contigs; S.Num, the number of scaffolds; S.CN50, the CN50 of scaf-

folds; S.Cov, the coverage of scaffolds; time, running time; PM, peak memory. Last column is the smallest peak memory and corresponding assembler about other

popular assemblers.

EPGA2 3989

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/31/24/3988/197171 by C
entral South U

niversity user on 24 July 2020

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv487/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv487/-/DC1


Heo,Y. et al. (2014) BLESS: bloom filter-based error correction solution for

high-throughput sequencing reads. Bioinformatics, 30, 1354–1362.

Luo,R. et al. (2012) SOAPdenovo2: an empirically improved memory-efficient

short-read de novo assembler. GigaScience, 1, 18.

Luo,J. et al. (2015) EPGA: de novo assembly using the distributions of reads

and insert size. Bioinformatics, 31, 825–833.

MacCallum,I. et al. (2009) ALLPATHS 2: small genomes assembled accurately

and with high continuity from short paired reads. Genome Biol., 10, R103.

Rizk,G. et al. (2013) DSK: k-mer counting with very low memory usage.

Bioinformatics, 29, 652–653.

Salzberg,S.L. et al. (2012) GAGE: a critical evaluation of genome assemblies

and assembly algorithms. Genome Res., 22, 557–567.

Simpson,J.T. et al. (2009) ABySS: a parallel assembler for short-read sequence

data. Genome Res., 19, 1117–1123.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short-read

assembly using de Bruijn graphs. Genome Res., 18, 821–829.

3990 J.Luo et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/31/24/3988/197171 by C
entral South U

niversity user on 24 July 2020


	btv487-TF1

