
Genome analysis

BOSS: a novel scaffolding algorithm based on

an optimized scaffold graph

Junwei Luo1,2, Jianxin Wang1,*, Zhen Zhang1, Min Li1 and

Fang-Xiang Wu3

1School of Information Science and Engineering, Central South University, ChangSha 410083, China, 2College of

Computer Science and Technology, Henan Polytechnic University, JiaoZuo 454000, China and 3Division of

Biomedical Engineering, University of Saskatchewan, Saskatchewan S7N 5A9, Canada

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on April 18, 2016; revised on June 22, 2016; accepted on September 8, 2016

Abstract

Motivation: While aiming to determine orientations and orders of fragmented contigs, scaffolding

is an essential step of assembly pipelines and can make assembly results more complete. Most

existing scaffolding tools adopt scaffold graph approaches. However, due to repetitive regions in

genome, sequencing errors and uneven sequencing depth, constructing an accurate scaffold graph

is still a challenge task.

Results: In this paper, we present a novel algorithm (called BOSS), which employs paired reads for

scaffolding. To construct a scaffold graph, BOSS utilizes the distribution of insert size to decide

whether an edge between two vertices (contigs) should be added and how an edge should be

weighed. Moreover, BOSS adopts an iterative strategy to detect spurious edges whose removal

can guarantee no contradictions in the scaffold graph. Based on the scaffold graph constructed,

BOSS employs a heuristic algorithm to sort vertices (contigs) and then generates scaffolds. The ex-

perimental results demonstrate that BOSS produces more satisfactory scaffolds, compared with

other popular scaffolding tools on real sequencing data of four genomes.

Availability and Implementation: BOSS is publicly available for download at https://github.com/

bioinfomaticsCSU/BOSS.

Contact: jxwang@mail.csu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As the increasing availability of next-generation sequencing technol-

ogy, many de novo genome assemblers were developed for recon-

structing complete and correct genome sequences (Gnerre et al.,

2011; He et al., 2013; Luo et al., 2015a). Genome assemblers usu-

ally first produce a large number of fragmented contigs. Then, scaf-

folding in the pipeline of assembly takes the contigs and paired reads

as input to produce some scaffolds (Li et al., 2016). A scaffold con-

sists of oriented and ordered contigs. These scaffolds could benefit

downstream analysis such as gene order, comparative or functional

genomics and patterns of recombination (Hunt et al., 2014).

Most existing scaffolding tools use scaffold graphs as the founda-

tion for scaffolding. In a scaffold graph, a vertex represents a contig,

an edge between two vertices represents the relative orientations

and orders of them. When constructing a scaffold graph, there

are two ways to decide whether an edge should be added between

two vertices. One common way is based on the number of paired

reads that link two contigs, if that number is larger than a threshold

(defined by scaffolding tools or users), an edge is added and the edge

weight is equal to that number. Another way is based on the distri-

bution of paired reads that link two vertices. BESST (Sahlin et al.,

2014) uses the standard deviation of gap distance and read position

VC The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 169

Bioinformatics, 33(2), 2017, 169–176

doi: 10.1093/bioinformatics/btw597

Advance Access Publication Date: 14 September 2016

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/33/2/169/2525706 by C
entral South U

niversity user on 24 July 2020

https://github.com/bioinfomaticsCSU/BOSS
https://github.com/bioinfomaticsCSU/BOSS
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw597/-/DC1
Deleted Text: ,
http://www.oxfordjournals.org/

distribution to decide whether an edge between two vertices should

be added.

Due to repetitive regions in genome, sequencing errors and un-

even sequencing depth, two non-adjacent contigs possibly have

paired reads that link them. As a result some spurious edges, which

increases the difficulty of scaffolding, may be introduced in a scaf-

fold graph. The spurious edges usually cause some contradictions

among the orientations or orders of contigs which are derived from

different edges (Bodily et al., 2016). There are two ways to avoid

the negative effect of spurious edges. One way adopts heuristic algo-

rithms to select paths from the scaffold graph that maximize the

weight of edges on the paths. SSPACE (Boetzer et al., 2011) uses a

greedy heuristic algorithm to select paths. OPERA (Gao et al., 2011)

utilizes the dynamic programming to choose paths. BESST (Sahlin

et al., 2014) adopts the breadth first search to pick up the path with

the maximum weights of edges connecting two larger contigs.

ScaffMatch (Mandric and Zelikovsky, 2015) proposed a novel opti-

mization formulation representing scaffolding as a maximum-

weight acyclic 2-matching problem. Another way transforms the de-

tection of spurious edges as finding a set of edges that minimize the

weight of edges and whose removal can lead to no contradictions in

the scaffold graph. SCARPA (Donmez and Brudno, 2013) and

SILP2 (Lindsay, 2014) adopt the linear programming to remove

spurious edges. MIP (Salmela et al., 2011) segments the scaffold

graph into small sub-graphs, and uses the mixed integer program-

ming to detect and remove spurious edges.

There are two problems which prevent most current scaffolding

tools from getting more accurate results. (1) If the weight of an edge

is equal to the number of paired reads, the edges among vertices

which come from low depth sequencing regions are possibly re-

garded as spurious. Using the distribution of paired reads can partly

resolve problems caused by repetitive regions and uneven sequenc-

ing depth. To our knowledge, BESST (Sahlin et al., 2014) is the only

scaffolding tool using the distribution of paired reads for construct-

ing a scaffold graph, but BESST only considers paired reads that link

two contigs to analyze the distribution and still sets the weight to be

the number of paired reads. Yet, the paired reads whose only one

mate read is mapped to contigs are also helpful to analyze the reli-

ability of edges. (2) Existing methods prefer to consider all the edges

simultaneously to detect spurious edges in scaffold graphs.

However, the high weight edges are more possibly correct. It is ap-

pealing to develop a new method to take advantage of orientation

and order information about high weight edges to detect the spuri-

ous edges.

In this paper, we utilize two new ideas to address these two prob-

lems. To address problem (1), for two contigs which have paired

reads that link them, if one read is mapped to one contig, then we

can infer the probability that its mate read can be mapped to an-

other contig based on the distribution of insert size. Based on this

idea, for two contigs, we consider all reads mapped to one contig no

matter whether their mate reads can be mapped to another contig or

not, and develop a statistical method to compute the expectation

number of paired reads that link them. Then, the expectation num-

ber is compared with the real number to get a score which is used to

decide whether an edge should be added or not, and the score is set

to be the edge weight. In case that two adjacent contigs come from

low depth sequencing regions, the edge weight still has a chance to

be high by this method. If two non-adjacent contigs have paired

reads that link them caused by repetitive regions, the expectation

number and the real number of paired reads commonly differ

greatly. Therefore, our statistical method can more accurately judge

whether an edge between two vertices should be added and how the

edge should be weighed. To address problem (2), we adopt an itera-

tive strategy to detect and remove spurious edges. In the first iter-

ation, we extract a sub-graph from the scaffold graph which is

induced from edges with high weight, then we iteratively add the

rest of edges to the sub-graph from high to low weight. In each iter-

ation, we detect and remove spurious edges based on the sub-graph.

The edges which have been confirmed to be non-spurious are used

as prior information to guide the removal in subsequent iterations.

The orientation and order information about high weight edges can

be utilized in this iterative strategy.

Based on these two new ideas, we present a novel scaffolder

BOSS (Building Optimized Scaffold graph for Scaffolding) to deter-

mine orientations and orders of contigs. BOSS is compared with

other popular scaffolding tools on four real datasets, the experimen-

tal results demonstrate BOSS can generate more satisfactory

scaffolds.

2 Notation

In this paper, a paired read pr is referred as two reads with opposite

orientations which are sequenced from two ends of a particular frag-

ment, lr(pr) is the left read of pr while rr(pr) is the right read of pr.

The length of the fragment is called the insert size which approxi-

mately follows a normal distribution Nðlis; risÞ (Luo et al., 2015b).

If a read r is forwardly mapped to a contig ci, crd(r,ci) is the distance

between the start mapping position of r and 30-end of ci. If the read r

is reversely mapped to ci, crd(r,ci) is the distance between the start

mapping position of r and 50-end of ci. The gap distance between ci

and cj is gdij. For a paired read pr that links ci and cj, we can get the

crd(lr(pr),ci) and crd(rr(pr),cj) (shown in Fig. 1).

3 Methods

BOSS uses one or more paired read libraries for scaffolding. Each

paired read library is stored in two FASTQ files. Before scaffolding,

a set of contigs should be generated by an assembler. Each paired

read library is mapped to the set of contigs, and the mapping infor-

mation is stored in a BAM file. Then, BOSS takes the set of contigs

and BAM files as input. The procedure of BOSS is outlined as fol-

lows: (i) Preprocessing; BOSS first analyzes the BAM files and filters

out some ambiguous mapping information. (ii) Constructing an

optimized scaffold graph; BOSS utilizes a statistical method to cal-

culate the expectation number of paired reads that link two contigs.

Based on the ratio of the expectation number to the real number,

BOSS decides whether an edge should be added and how the edge

should be weighed. Furthermore, BOSS uses an iterative strategy to

detect and remove spurious edges. (iii) Sorting vertices in the scaf-

fold graph; BOSS adopts a heuristic algorithm to sort vertices thus

generating scaffolds.

3.1 Preprocessing
Due to repetitive regions and sequencing errors, a read may have

multiple mapping positions. BOSS only keeps the read mapping

Fig. 1. For one paired read pr and two contigs ci and cj, lr(pr) is forwardly

mapped to ci, rr(pr) is reversely mapped to cj

170 J.Luo et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/33/2/169/2525706 by C
entral South U

niversity user on 24 July 2020

Deleted Text: ,
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: Figure
Deleted Text: 1
Deleted Text: 2
Deleted Text: 3

position with the highest score and discards the rest. Because the

insert size approximately follows a normal distribution Nðlis;risÞ,
the probability that the insert size is beyond the range ½lis � 3 � ris;

lis þ 3 � ris� is less than 5%. For a paired read mapped to the same

contig, if its insert size is beyond ½lis � 3 � dis; lis þ 3 � ris�, it is con-

sidered as abnormal and its mapping information will be removed.

For a paired read pr that links two contigs ci and cj, if the sum of

crd(lr(pr),ci) and crd(rr(pr),cj) is greater than lis þ 3 � ris, its map-

ping information will also be removed. Sequencing errors commonly

cause that some reads cannot be mapped to any position. BOSS cal-

culates the probability, a, that a read can be mapped to a contig,

which is the ratio of the number of mapped reads left to the total

number of reads. Next, BOSS calculates read coverage for each pos-

ition of contigs based on read mapping information, then BOSS

computes, rrc, the standard deviation of the read coverage and the

average of read coverage. BOSS removes paired reads whose one

mate read is mapped to the region whose read coverage is 2*rrc

larger than the average.

3.2 Constructing a scaffold graph
In this step, BOSS constructs a scaffold graph G with the vertex set

V and the edge set E. A vertex vi represents a contig ci. An edge eij is

represented by a six-tuple ðvi; vj;oi; oj; gdij;wijÞ, where vi and vj are

two vertices, oi and oj are mapping orientations of paired reads to vi

and vj, respectively, gdij is the gap distance between vi and vj and wij

is the weight of the edge.

3.2.1 Adding edges between vertices

If there exists paired reads that link two vertices vi and vj (ci and cj),

BOSS uses the statistical method to decide whether an edge should

be added between them and how the edge should be weighed. The

statistical method includes five steps.

(1) Determining the mapping orientations between vi and vj. If the

paired reads that link vi and vj have two or more different mapping

orientation pairs (oi, oj), BOSS only keeps the mapping orientation

pair which is supported by the larger number of paired reads

and discards paired reads with other mapping orientation pairs.

After that, if the number of paired reads that link them is smaller

than a threshold nummin (default 2), a parameter in BOSS, an edge

will not be added between them and the statistical method is

terminated.

(2) Computing the gap distance between vi and vj. For the tth

paired read prt that links vi and vj, BOSS calculates crd(lr(pr),vi)

and crd(rr(pr),vj)) (an example in Fig. 1). Based on all paired

reads that link them, BOSS first calculates gdij by the following

formula:

gdij ¼
1

n

Xn

t¼1

ðlis � crdðlrðprtÞ; viÞ � crdðrrðprtÞ; vjÞÞ (1)

where n is the number of paired reads that link vi and vj, prt is the

t-th paired read.

(3) Computing the expectation number of paired reads between vi

and vj based on reads mapped to vi. Given a read r which has been

mapped to vi (ci) and its mapping orientation is the same as oi, if the

mate read of r can be mapped to vj, lmin and lmax are the smallest

and largest distance between them. lmin is the sum of crd(r,vi),

gdij and len(r). len(r) is the length of r. lmax is the sum of crd(r,vi),

gdij and len(vj). len(vj) is the length of vj (shown in Fig. 2).

The probability p(r,vi,vj) that its mate read can be mapped to vj (cj)

is the probability that the insert size falls in the interval ½lmin; lmax�,
which can be calculated by the following formula:

pðr; vi; vjÞ ¼ a �
ðlmax

lmin

f ðxÞdx (2)

where a is the probability that one read can be mapped to a contig,

which has been acquired in the step of preprocessing. f(x) is the

probability density function of Nðlis;risÞ.
Finally, the expectation number, expij, of paired reads that link

the two vertices is calculated by the following formula:

expij ¼
X
r2RS

pðr; vi; vjÞ (3)

where RS is the set of reads. Because the insert size larger than lis

þ3 � ris is regarded as abnormal, RS only consists of reads which

fall in the region ½maxðlis þ 3 � ris � gdij � lenðrÞ; 0Þ; lenðviÞ� of vi

and whose mapping orientations are the same as oi, no mater

whether their mate reads are mapped to vj or not. Then, BOSS

defines:

qij ¼ min
expij

n
;

n

expij

 !
(4)

where qij is to measure how close the expectation number of paired

reads is to the real number.

(4) Computing the expectation number of paired reads between vi

and vj based on reads mapped to vj. BOSS can also get another ex-

pectation number expji based on reads mapped to vj in the same way

described in the previous step, and get qji.

(5) Computing the edge weight. If the arithmetic mean of qij and qji

are greater than a threshold wmin (default 0.2), BOSS adds an edge

eij between vi and vj. If oi (oj) is a forward mapping, the edge eij con-

nects 30-end of vi (vj), else 50-end. wij is equal to the arithmetic mean

of qij and qji. If qij or qji is smaller than wmin, but vi has no paired

reads that link other vertices with the same oi, so is vj, BOSS also

adds an edge between them and wij is set to be wmin. When comput-

ing the edge weight, BOSS can use not only the arithmetic mean but

also the geometric mean, which is controlled by a parameter in

BOSS. The influence of arithmetic mean and geometric mean on

BOSS is shown in Supplementary Material. BOSS adopts arithmetic

mean in default.

After processing all paired contigs, a weighted scaffold graph is

constructed. If the length of a vertex is equal to or larger than

lis þ 3 � ris, the vertex is defined as a long vertex. For a long vertex

Fig. 2. When the read r has been mapped to ci, the probability that its mate

read rmate can be mapped to cj is the probability that their insert size falls in

[lmin, lmax]. When rmate is mapped to the most left end of cj, lmin is the smallest

insert size. When rmate is mapped to the most right end of cj, lmax is the largest

insert size

BOSS 171

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/33/2/169/2525706 by C
entral South U

niversity user on 24 July 2020

Deleted Text:
Deleted Text: S
Deleted Text: G
Deleted Text: ,
Deleted Text: -
Deleted Text: Figure
Deleted Text: Figure
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw597/-/DC1

and its edges connecting other long vertices from the same end,

BOSS only keeps the edge with the maximum weight.

3.2.2 Detecting spurious edges

Spurious edges are usually caused by complex repetitive regions

which are difficult to judge by using the local paired reads that link

two vertices. BOSS performs the detection of spurious edges by it-

eratively assigning the orientations and the orders of vertices, and

maximizing the weights of non-spurious edges. An edge is non-

spurious if the orientation and the order information provided by it

are consistent with the assignment, else spurious.

(1) Detecting spurious edges by assigning the orientations of verti-

ces. In this step, BOSS tries to find the optimal assignment of orien-

tations that maximize the sum weight of non-spurious edges by an

integer linear programming model LP(OB, CS) (see Algorithm 1).

OB is the objective function and CS is the set of constraints. si 2 f0;
1g denotes orientation of vi. gij 2 f0; 1g represents whether eij is

spurious or not. BOSS iterates w from wmax to wmin with a step of

0.1, w is an edge weight threshold used to construct a sub-graph

based on the scaffold graph. In the first iteration, w¼wmax, BOSS

constructs a sub-graph Gs which consists of edges whose weights are

in [w,1). In the next iteration, w is set to w - 0.1, BOSS adds edges

whose weights are in ½w;wþ 0:1Þ to Gs. In each iteration, BOSS

constructs LP(OB, CS) and solves it. After getting the orientation as-

signment, BOSS removes spurious edges, while the remaining edges

are non-spurious and are used as prior information to guide detec-

tion of spurious edges in the subsequent iterations. The iteration will

be terminated after w is smaller than wmin.

In each iteration, the orientation of each vertex in Gs is a vari-

able. TE is a set of edges which are added to Gs in this iteration. For

an edge eij 2 Gs, if eij 62 TE, and oi 6¼ oj, BOSS adds the following

constraint equation (5) to CS in which gij¼1. If eij 62 TE, and oi¼oj,

BOSS adds the following constraint equation (6) to CS in which

gij¼1. If eij 2 TE, and oi 6¼ oj, BOSS adds the following constraint

equation (5) to CS in which gij is a variable. If eij 2 TE, and oi¼oj,

BOSS adds the following constraint equation (6) to CS in which gij

is a variable.

gij � si þ sj � 2� gij (5)

gij � 1 � si � sj � 1� gij (6)

Then BOSS maximizes the sum weight of non-spurious edges,

and the objective function is:

OB ¼MAX
X

eij2TE

ðwij � gijÞ

0
@

1
A (7)

BOSS uses the branch-and-bound algorithm to solve LP(OB,

CS) and gets the approximate optimal assignment. If gij ¼ 0, eij is

spurious and BOSS removes eij from Gs. If gij ¼ 1, eij is non-

spurious. After all iterations, the scaffold graph G is replaced with

Gs. Finally BOSS reverses and complements some vertices to make

sure that two ends of each edge correspond to 50-end of one vertex

and 30-end of another vertex, respectively.

(2) Detecting spurious edges by assigning the coordinates of vertices.

In this step, BOSS assigns a starting coordinate for each vertex and

tries to find the best assignment such that the gap distances between

vertices calculated by starting coordinates agree the best with

the gap distances suggested by edges. BOSS still uses the iterative

strategy to construct sub-graph Gs as the above process. In each

iteration, BOSS constructs a new LP(OB, CS) based on Gs. TE is a

set of edges which are added to Gs in this iteration. For Gs, if edge

eij 2 TE which connects 30-end of vi and 50-end of vj, BOSS adds the

following constraint to CS (Donmez and Brudno, 2013):

Lð/ij � 1Þ <¼ xj � xi � lenðciÞ � gdij <¼ Lð1� /ijÞ (8)

xi 2 ½0;LÞ is an integer and denotes the staring coordinate of ver-

tex vi. L is a large constant and equal to twice the sum of the length

of all contigs. /ij is a slack variable in the range ½0;1� which reflects

the consistency between two gap distances suggested by starting co-

ordinates (xi and xj) and edge eij. If edge eij 62 TE, eij is non-spurious,

and BOSS adds the following constraint to CS, which is used as

prior information to identify spurious edges from TE.

0 < xj � xi � lenðciÞ � lis þ 3 � ris (9)

The objective function is:

OB ¼MAX
X

eij2ES

ðwij � /ijÞ

0
@

1
A (10)

After BOSS gets the approximate optimal assignment, for an

edge in TE, if the gap distance suggested by starting coordinates is

far away from the one suggested by the edge, this edge is spurious

and BOSS removes it. After all iterations, the scaffold graph G is

Algorithm 1. Detect_orientation(G)

1: Initialization Gs ¼1; TE ¼1;w ¼ wmax;CS ¼1
2: while w >¼ wmin do

3: for each edgeeij 2 G do

4: if w <¼ wij < wþ 0:1 then

5: add eij to Gs and TE

6: end if

7: end for

8: for each edge eij 2 Gs do

9: if eij 62 TE then

10: if oi 6¼ oj then

11: add ”si þ sj ¼ 1”to CS

12: else

13: add ”si ¼ sj”to CS

14: end if

15: else

16: if oi 6¼ oj then

17: add”gij <¼ si þ sj <¼ 2� gij” to CS

18: else

19: add ”gij � 1 <¼ si � sj <¼ 1� gij” to CS

20: end if

21: end if

22: end for

23: OB ¼MAXð
P

eij2TEðwij � gijÞÞ and solve LP(OB, CS)

24: for each edgeeij 2 TE do

25: if gij¼= 0then

26: delete eij from Gs

27: end if

28: end for

29: TE ¼1; CC ¼1and w ¼ w� 0:1

30: end while

31: replace G with Gs and output G

172 J.Luo et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/33/2/169/2525706 by C
entral South U

niversity user on 24 July 2020

replaced with Gs, and BOSS gets the starting coordinate of each ver-

tex. If two vertices occupy the same coordinates, BOSS traverses

the scaffold graph from the two vertices separately to find the first

vertex they meet, and removes the edge with the smaller weight

entering the first vertex.

3.3 Sorting vertices in scaffold graph
In this step, BOSS produces scaffolds by sorting vertices in the scaf-

fold graph G. BOSS first extracts simple paths only including long

vertices whose lengths are equal to or larger than lis þ 3 � ris, and

these simple paths compose a path set PS. Second, BOSS identifies

short vertices (whose lengths are smaller than lis þ 3 � ris) which

have edges connecting with two adjacent long vertices in the same

path, then BOSS inserts these short vertices into the middle of the

two adjacent long vertices. Finally, for a path, BOSS extends it

through short vertices which have not been inserted to the paths in

PS. In the extending process, BOSS adopts the breadth-first search

to sort the short vertices based on the scaffold graph, gap distances

and contig lengths, these sorted vertices are appended to the

paths. When the extension meets one end of another path, these

two paths are merged. The process is terminated if there are no verti-

ces that have not been visited. An illustrative example is shown in

Figure 3.

4 Experiment

4.1 Datasets
To evaluate the performance of BOSS, experiments are carried out

on four real datasets used in Hunt et al. (2014). These datasets in-

clude Illumina reads from the Staphylococcus aureus (S.aureus),

Rhodobacter sphaeroides (R.sphaeroides), Human chromosome 14

and the Plasmodium falciparum (P.falciparum) clone 3D7 reference

genome. Details about four datasets are listed in Table 1. The map-

ping read ratio is calculated based on Bowtie2 (Langmead and

Salzberg, 2012). The first two datasets include only one read library

and the last two datasets contain two read libraries with different

properties. Contig sets are generated by genome assembler Velvet

(Zerbino and Birney, 2008).

4.2 Evaluation metrics
Although some users might think that good scaffolds should have a

large N50 and CN50 (Salzberg et al., 2012), these metrics do not ne-

cessarily reflect correctly orientated or ordered contigs in a scaffold

(Hunt et al., 2014; Mandric and Zelikovsky, 2015). For assessing

the quality of scaffolds reliably, a novel evaluation tool is proposed

by Hunt et al. (2014) in which each contig is represented by a se-

quence tag and four key metrics are presented: (1) Correct Joins

(CJ). (2) Incorrect Joins (IJ). (3) Skipped Tags (ST). (4) Lost Tags

(LT). The last three metrics are bad joins. We set the weights of four

metrics of CJ, IJ, LT and ST as 1, 1, 2 and 0.5, respectively, accord-

ing to the widely accepted rule (Hunt et al., 2014). The number of

potential joins is the number of contigs that can be joined to the

scaffold which is the number of contigs minus the number of

chromosomes. After we get the correct joins (CJ) and bad joins (IJ,

ST and LT) of scaffolds, we adopt the F-score as a comprehensive

metric which is calculated by TPR and PPV (Mandric and

Zelikovsky, 2015).

4.3 Statistical method and iterative strategy
For verifying the effectiveness of the statistical method and the itera-

tive strategy presented in this paper, we compare other two different

versions of BOSS: BOSS1 and BOSS2. The difference among BOSS1,

BOSS2 and BOSS is that they adopt different strategies for construct-

ing a scaffold graph. When constructing a scaffold graph, BOSS1

adds an edge between two vertices if the number of paired reads that

links them is larger than nummin. BOSS2 uses the statistical method

(described in section 3.2.1) for constructing a scaffold graph. BOSS

not only adopts the statistical method but also the iterative strategy

to construct a scaffold graph. The scaffolding results about S.aureus

and P.falciparum are shown in Table 2. The scaffolding results

about R.sphaeroides and Human chromosome 14 are shown in

Table 3.

From Tables 2 and 3, we can find that the F-score of BOSS2 is

larger than that of BOSS1, and the F-score of BOSS is larger than

that of BOSS2 for dataset of S.aureus, dataset of R.sphaeroides,

Fig. 3. (a) A scaffold graph, each edge is directed from 30-end of a vertex to 50-

end of another vertex. A, B, C, D and E are long vertices, the rest are short ver-

tices, the numbers on edges are gap distances between vertices. (b) ABC and

DE are two simple paths of long vertices, the path set PS¼ {ABC, DE}. (c)

Short vertices F and G both have edges connected to A and B, then F and G

are inserted in path ABC, the orders of F and G are determined based on the

gap distances between vertices, PS¼ {AFGBC, DE}. (d) Extending path

AFGBC, C is considered as a starting vertex and BOSS uses the breadth-first

search to sort short vertices based on the distance from C to themselves.

When facing D, the extension will terminates and two paths are merged to

one new path, PS¼ {AFGBCJHKIDE}

Table 1. Details of real datasets

Staphylococcus aureus Rhodobacter sphaeroides Plasmodium falciparum Human chromosome 14

Genome size(Mbp) 2.9 4.6 23.3 88.2

Read length(bp) 37 101 76 75 101 57

Number of reads(M) 3.5 2.1 52.5 12.0 22.7 2.4

Coverage �45 �46 �171 �39 �26 �2

Insert size(bp) 3500 3700 650 2700 2900 34500

Mapping read ratio 0.548 0.693 0.778 0.426 0.729 0.890

BOSS 173

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/33/2/169/2525706 by C
entral South U

niversity user on 24 July 2020

Deleted Text: M
Deleted Text: ,
Deleted Text: ,
Deleted Text: M
Deleted Text: I
Deleted Text: S

short insert size dataset of P.falciparum, short and long insert size

datasets of P.falciparum, short insert size dataset of Human chromo-

some 14, and short and long insert size datasets of Human chromo-

some 14. For the long insert size dataset of P.falciparum, although

the F-score of BOSS2 is larger than that of BOSS1, the F-score of

BOSS is smaller than that of BOSS2. For the long insert size dataset

of Human chromosome 14, the F-score of BOSS1 is the largest and

the F-score of BOSS is smaller than that of BOSS2. In conclusion,

the statistical method and the iterative strategy are effective for most

cases. Below we discuss the case that BOSS produces more satisfac-

tory scaffolding results.

4.4 Comparisons of scaffolders and discussion
We compare BOSS with popular scaffolders Bambus2 (Koren et al.,

2011), MIP (Salmela et al., 2011), OPERA (Gao et al., 2011),

SCARPA (Donmez and Brudno, 2013), SOPRA (Dayarian et al.,

2010) and SSPACE (Boetzer et al., 2011), and scaffolding modules

from assemblers ABYSS (Simpson et al., 2009), SOAP2 (Luo et al.,

2012) and SGA (Simpson and Durbin, 2012). We compute the

F-score of these scaffolders based on scaffolding results which

are abstracted from Hunt et al. (2014) whose datasets are used in

this paper. Moreover, two recently published scaffolders BESST

(Sahlin et al., 2014) and ScaffMatch (Mandric and Zelikovsky,

2015) are also considered, and we compute the F-score of these two

scaffolders based on Mandric and Zelikovsky (2015) who adopt the

same datasets.

Some scaffolders contain the mapping process by one or more

mapping tools in their own pipeline, others need SAM or BAM files

produced by users themselves. Read mapping information produced

by different mapping tools usually leads to distinct scaffolding re-

sults. For conducting unbiased investigation, three mapping tools:

Bowtie (Langmead et al., 2009), Bowtie2 (Langmead and Salzberg,

2012) and BWA (Li and Durbin, 2009) are used. Bowtie maps any

read which has no mismatches (when using the option -v 0) or up to

three mismatches (when using -v 3). We only show the evaluation

results of scaffolders using Bowtie2 except scaffolders containing

their own mapping tools. All evaluation results, and the running

time and peak memory of BOSS are provided in Supplementary

Materials.

For S.aureus, there are 170 contigs and 167 potential joins, and

the scaffolding results are shown in Table 4. For R.sphaeroides,

there are 577 contigs and 570 potential joins, and the scaffolding

Table 2. Performances of BOSS1, BOSS2 and BOSS on S.aureus and P.falciparum

Dataset of S.aureus Short insert size

Dataset of P.falciparum

Long insert size

Dataset of P.falciparum

Short and long insert size

Datasets of P.falciparum

TPR PPV F-score TPR PPV F-score TPR PPV F-score TPR PPV F-score

BOSS1 0.725 0.569 0.638 0.585 0.737 0.652 0.747 0.648 0.694 0.820 0.751 0.784

BOSS2 0.886 0.851 0.868 0.634 0.896 0.742 0.828 0.813 0.821 0.911 0.910 0.910

BOSS 0.862 0.878 0.870 0.642 0.921 0.757 0.798 0.816 0.807 0.920 0.928 0.924

Table 3. Performances of BOSS1, BOSS2 and BOSS on R.sphaeroides and Human chromosome 14

Dataset of R.sphaeroides Short insert size

Dataset of Human

Long insert size

Dataset of Human

Short and long insert size

Datasets of Human

TPR PPV F-score TPR PPV F-score TPR PPV F-score TPR PPV F-score

BOSS1 0.751 0.638 0.690 0.661 0.528 0.587 0.305 0.452 0.364 0.688 0.532 0.600

BOSS2 0.863 0.801 0.831 0.789 0.692 0.738 0.239 0.556 0.334 0.806 0.697 0.748

BOSS 0.870 0.881 0.876 0.766 0.783 0.775 0.233 0.559 0.329 0.767 0.745 0.756

Table 4. Evaluation results about S.aureus and R.sphaeroides

S.aureus R.sphaeroides

N50 CN50 TPR PPV F-score N50 CN50 TPR PPV F-score

ABySS 619764 619764 0.593 0.904 0.716 280984 276804 0.674 0.904 0.772

Bambus2 242814 242650 0.569 0.852 0.682 146002 145952 0.577 0.896 0.702

MIP – – – – – 488095 487941 0.735 0.823 0.777

OPERA 1084108 686577 0.671 0.772 0.718 108182 108172 0.554 0.959 0.703

SCARPA 112264 112083 0.461 0.675 0.548 37667 37581 0.367 0.907 0.522

SGA 309286 309153 0.497 0.922 0.646 42825 42722 0.407 0.939 0.568

SOAP2 643384 621109 0.784 0.811 0.798 2522483 2522482 0.821 0.942 0.877

SOPRA 112278 112083 0.240 0.842 0.373 32232 30492 0.425 0.852 0.567

SSPACE 332784 261710 0.629 0.764 0.690 109776 108410 0.626 0.903 0.740

BESST 1716351 335064 0.671 0.775 0.719 1021151 1020921 0.846 0.896 0.870

ScaffMatch 1476925 351546 0.832 0.779 0.805 2547006 2528248 0.644 0.970 0.774

BOSS 1035497 596371 0.862 0.878 0.870 2548917 2546780 0.870 0.881 0.876

174 J.Luo et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/33/2/169/2525706 by C
entral South U

niversity user on 24 July 2020

Deleted Text: S
Deleted Text: D
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw597/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw597/-/DC1

results are also shown in Table 4. For P.falciparum, there are 9318

contigs and 9302 potential joins. All scaffolders use two datasets for

scaffolding separately, and the scaffolding results are shown in

Table 5. For Human chromosome 14, there are 19936 contigs and

19935 potential joins, and the scaffolding results using two datasets

separatively are shown in Table 6. For P.falciparum and Human

chromosome 14, the scaffolding results using the combination of

the short and long insert size datasets are shown in Table 7. ‘–’ in

Tables 4, 6 and 7 means that the results cannot be got by corres-

ponding scaffolders.

In Table 4, 5, 6 and 7, the bold values represent the best values of

CN50 or F-score. For eight datasets, BOSS has the best F-score for

three datasets and the best CN50 for three datasets. SOAP2 has the

best F-score for four datasets and the best CN50 for two datasets.

OPERA has the best CN50 for two datasets. ScaffMatch has the best

F-score for one dataset. MIP has the best CN50 for one dataset.

4.5 Discussion
By investigating and analyzing the scaffolding results of BOSS,

we find that BOSS performs better on datasets whose ratio of the

Table 5. Evaluation results about P.falciparum

Short insert size Long insert size

N50 CN50 TPR PPV F-score N50 CN50 TPR PPV F-score

ABySS 5862 5689 0.590 0.973 0.734 3734 3548 0.247 0.882 0.385

Bambus2 3193 3093 0.307 0.940 0.463 29705 24913 0.548 0.825 0.659

MIP 6158 5485 0.596 0.876 0.710 88297 78672 0.834 0.737 0.782

OPERA 5035 4824 0.398 0.899 0.552 44667 40170 0.673 0.879 0.762

SCARPA 4912 4628 0.519 0.872 0.651 14037 9708 0.525 0.880 0.658

SGA 5324 5104 0.531 0.972 0.687 4438 4096 0.312 0.898 0.463

SOAP2 6234 5981 0.596 0.967 0.737 167570 83851 0.823 0.874 0.848

SOPRA 4954 4632 0.526 0.931 0.672 49671 44158 0.779 0.913 0.841

SSPACE 6011 5845 0.618 0.957 0.751 17796 15553 0.496 0.875 0.633

BESST 7471 3931 0.283 0.732 0.408 4133 2813 0.141 0.836 0.241

ScaffMatch 8626 5872 0.607 0.905 0.727 41564 25380 0.749 0.833 0.789

BOSS 7308 6723 0.642 0.921 0.757 76831 41075 0.798 0.816 0.807

Table 6. Evaluation results about Human chromosome 14

Short insert size Long insert size

N50 CN50 TPR PPV F-score N50 CN50 TPR PPV F-score

ABySS 195177 191188 0.470 0.843 0.604 12262 12215 0.001 0.711 0.003

Bambus2 98162 85659 0.530 0.824 0.645 278682 72210 0.179 0.683 0.284

MIP 244064 235731 0.697 0.790 0.741 272440 49800 0.296 0.528 0.379

OPERA 214972 207047 0.617 0.877 0.724 73477 20677 0.185 0.554 0.277

SCARPA 58330 55760 0.499 0.886 0.638 43969 17786 0.080 0.667 0.144

SGA 134574 133192 0.490 0.858 0.623 – – – – –

SOAP2 282437 234561 0.790 0.889 0.836 220644 86679 0.227 0.669 0.338

SOPRA 100768 96436 0.740 0.909 0.816 79517 34750 0.147 0.641 0.240

SSPACE 78552 77361 0.480 0.867 0.618 77832 30449 0.138 0.676 0.229

BESST 146749 80218 0.400 0.816 0.537 13815 8828 0.006 0.621 0.012

ScaffMatch 131135 80329 0.623 0.847 0.718 148412 42523 0.298 0.858 0.442

BOSS 216675 132718 0.766 0.783 0.775 156553 43111 0.233 0.559 0.329

Table 7. Evaluation results about combination of two datasets

P.falciparum Human chromosome 14

N50 CN50 TPR PPV F-score N50 CN50 TPR PPV F-score

ABySS 6828 6529 0.615 0.968 0.753 198501 195474 0.471 0.853 0.607

Bambus2 – – – – – 299753 99505 0.516 0.764 0.616

MIP 56672 38704 0.869 0.875 0.872 44372 31148 0.428 0.717 0.536

OPERA 42450 38409 0.692 0.873 0.772 1692782 1062031 0.645 0.876 0.743

SCARPA 36945 23951 0.789 0.846 0.816 134364 106654 0.537 0.875 0.666

SGA 6606 6134 0.528 0.943 0.677 134574 133192 0.490 0.858 0.624

SOAP2 12076 10629 0.643 0.911 0.754 561198 447849 0.790 0.885 0.835

SOPRA 16366 15511 0.754 0.972 0.849 112239 75046 0.523 0.830 0.641

SSPACE 6383 5982 0.633 0.954 0.761 66271 65222 0.464 0.868 0.605

BESST 25300 7621 0.422 0.755 0.542 295976 114434 0.416 0.826 0.553

ScaffMatch 78627 47662 0.884 0.875 0.879 802755 195239 0.635 0.866 0.733

BOSS 80036 62896 0.920 0.928 0.924 425575 135241 0.767 0.745 0.756

BOSS 175

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/33/2/169/2525706 by C
entral South U

niversity user on 24 July 2020

Deleted Text:

number of mapping reads to the genome size is large. The ratio is

symbolized as x. We can calculate x based on the read number, gen-

ome size and mapping read ratio which are shown in Table 1. For

datasets of S.aureus and the short insert size dataset of P.falciparum,

their values of x are 0.661 and 1.753, respectively. BOSS gets the

best F-score compared with all other scaffolders. We conjecture that

BOSS produces more satisfactory scaffolding result when the value

of x for datasets is large.

For the dataset of R.sphaeroides, long insert size dataset of

Plasmodium falciparum, short insert size dataset of Human chromo-

some 14, and long insert size dataset of Human chromosome 14,

their values of x are 0.316, 0.219, 0.188 and 0.024, and BOSS also

can produce acceptable scaffolding results. The reason why the

value of x influences BOSS is that the paired reads between two ac-

tual adjacent contigs usually is large when the value of x is large,

and this is helpful in more precisely weighting edges based on the

statistical method proposed in this paper.

In BOSS, the insert size and its standard deviation of the dataset

are parameters provided by users. For further examining the impact

of standard deviation on the scaffolding results, we conduct BOSS

with different standard deviations based on the mapping tool

Bowtie2. The scaffolding results are shown in Supplementary

Material. From the results, we can see that different standard devi-

ations influence the scaffolding results, but the range of F-score vari-

ation is not large. BOSS adopts ris ¼ 0:07 � lis in default.

5 Conclusion

In this paper, we have presented a novel scaffolder BOSS for deter-

mining orientations and orders of contigs. BOSS employs a new stat-

istical method to decide whether an edge between contigs should be

added and how the edge should be weighed. In addition, BOSS

adopts an iterative strategy to detect and remove spurious edges in

the scaffold graph. Finally, BOSS sorts vertices in the scaffold graph,

thus producing oriented and ordered vertices which correspond to

scaffolds. The experiments have been conducted on four datasets.

The results have illustrated that BOSS outperforms other competing

scaffolders when the value of x for datasets is large, and also can

produce comparable scaffolding results in the other cases.

Funding

This work was supported in part by the National Natural Science Foundation

of China under Grant No. 61232001, No. 61420106009, No. 61379108,

No.61602156 and The National Science Fund for Excellent Young Scholars

under Grant No. 61622213.

Conflict of Interest: none declared.

References

Bodily,P.M. et al. (2016) ScaffoldScaffolder: solving contig orientation via

bidirected to directed graph reduction. Bioinformatics, 32, 17–24.

Boetzer,M. et al. (2011) Scaffolding pre-assembled contigs using SSPACE.

Bioinformatics, 27, 578–579.

Dayarian,A. et al. (2010) SOPRA: scaffolding algorithm for paired reads via

statistical optimization. BMC Bioinformatics, 11, 345.

Donmez,N. and Brudno,M. (2013) SCARPA: scaffolding reads with practical

algorithms. Bioinformatics, 29, 428–434.

Gao,S. et al. (2011) Opera: reconstructing optimal genomic scaffolds with

high-throughput paired-end sequences. J. Comput. Biol., 18, 1681–1691.

Gnerre,S. et al. (2011) High-quality draft assemblies of mammalian genomes

from massively parallel sequence data. Proc. Natl. Acad. Sci. U. S. A., 108,

1513–1518.

He,Y. et al. (2013) De novo assembly methods for next generation sequencing

data. Tsinghua Sci. Technol., 5, 500–514.

Hunt,M. et al. (2014) A comprehensive evaluation of assembly scaffolding

tools. Genome Biol., 15, 42.

Koren,S. et al. (2011) Bambus 2: scaffolding metagenomes. Bioinformatics,

31, 2964–2971.

Langmead,B. et al. (2009) Ultrafast and memory-efficient alignment of short

DNA sequences to the human genome. Genome Biol., 10, R25.

Langmead,B. and Salzberg,S. (2012) Fast gapped-read alignment with Bowtie

2. Nat. Methods, 9, 357–359.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760.

Li,M. et al. (2016) ISEA: iterative seed-extension algorithm for de novo assem-

bly using paired-end information and insert size distribution. IEEE/ACM

Trans. Comput. Biol. Bioinf., doi: 10.1109/TCBB.2016.2550433.

Lindsay,J. et al. (2014) Ilp-based maximum likelihood genome scaffolding.

BMC Bioinformatics, 15, S9.

Luo,R. et al. (2012) SOAPdenovo2: an empirically improved memory-efficient

short-read de novo assembler. GigaScience, 1, 18.

Luo,J. et al. (2015a) EPGA: de novo assembly using the distributions of reads

and insert size. Bioinformatics, 31, 825–833.

Luo,J. et al. (2015b) EPGA2: memory-efficient de novo assembler.

Bioinformatics, 31, 3988–3990.

Mandric,I. and Zelikovsky,A. (2015) ScaffMatch: Scaffolding Algorithm

Based on Maximum Weight Matching. Bioinformatics, 31, 2632–2638.

Sahlin,K. et al. (2014) Besst-efficient scaffolding of large fragmented assem-

blies. BMC Bioinformatics, 15, 281.

Salmela,L. et al. (2011) Fast scaffolding with small independent mixed integer

programs. Bioinformatics, 27, 3259–3265.

Simpson,J.T. et al. (2009) ABySS: a parallel assembler for short-read sequence

data. Genome Res., 19, 1117–1123.

Salzberg,S. et al. (2012) GAGE: a critical evaluation of genome assemblies and

assembly algorithms. Genome Res., 22, 557–567.

Simpson,J.T. and Durbin,R. (2012) Efficient de novo assembly of large gen-

omes using compressed data structures. Genome Res., 22, 549C556.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short-read

assembly using de Bruijn graphs. Genome Res., 18, 821–829.

176 J.Luo et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/33/2/169/2525706 by C
entral South U

niversity user on 24 July 2020

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw597/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw597/-/DC1

